A structural mechanism for bacterial autotransporter glycosylation by a dodecameric heptosyltransferase family
نویسندگان
چکیده
A large group of bacterial virulence autotransporters including AIDA-I from diffusely adhering E. coli (DAEC) and TibA from enterotoxigenic E. coli (ETEC) require hyperglycosylation for functioning. Here we demonstrate that TibC from ETEC harbors a heptosyltransferase activity on TibA and AIDA-I, defining a large family of bacterial autotransporter heptosyltransferases (BAHTs). The crystal structure of TibC reveals a characteristic ring-shape dodecamer. The protomer features an N-terminal β-barrel, a catalytic domain, a β-hairpin thumb, and a unique iron-finger motif. The iron-finger motif contributes to back-to-back dimerization; six dimers form the ring through β-hairpin thumb-mediated hand-in-hand contact. The structure of ADP-D-glycero-β-D-manno-heptose (ADP-D,D-heptose)-bound TibC reveals a sugar transfer mechanism and also the ligand stereoselectivity determinant. Electron-cryomicroscopy analyses uncover a TibC-TibA dodecamer/hexamer assembly with two enzyme molecules binding to one TibA substrate. The complex structure also highlights a high efficient hyperglycosylation of six autotransporter substrates simultaneously by the dodecamer enzyme complex.
منابع مشابه
An iron-containing dodecameric heptosyltransferase family modifies bacterial autotransporters in pathogenesis.
Autotransporters deliver virulence factors to the bacterial surface by translocating an effector passenger domain through a membrane-anchored barrel structure. Although passenger domains are diverse, those found in enteric bacteria autotransporters, including AIDA-I in diffusely adhering Escherichia coli (DAEC) and TibA in enterotoxigenic E. coli, are commonly glycosylated. We show that AIDA-I ...
متن کاملO-linked glycosylation ensures the normal conformation of the autotransporter adhesin involved in diffuse adherence.
The Escherichia coli adhesin involved in diffuse adherence (AIDA-I) is one of the few glycosylated proteins found in Escherichia coli. Glycosylation is mediated by a specific heptosyltransferase encoded by the aah gene, but little is known about the role of this modification and the mechanism involved. In this study, we identified several peptides of AIDA-I modified by the addition of heptoses ...
متن کاملUnconventional N-Linked Glycosylation Promotes Trimeric Autotransporter Function in Kingella kingae and Aggregatibacter aphrophilus
UNLABELLED Glycosylation is a widespread mechanism employed by both eukaryotes and bacteria to increase the functional diversity of their proteomes. The nontypeable Haemophilus influenzae glycosyltransferase HMW1C mediates unconventional N-linked glycosylation of the adhesive protein HMW1, which is encoded in a two-partner secretion system gene cluster that also encodes HMW1C. In this system, H...
متن کاملEffect of glycosylation on the extracellular domain of the Ag43 bacterial autotransporter: enhanced stability and reduced cellular aggregation.
Autotransporters constitute the biggest group of secreted proteins in Gram-negative bacteria and contain a membrane-bound beta-domain and a passenger domain secreted to the extracellular environment via an unusually long N-terminal sequence. Several passenger domains are known to be glycosylated by cytosolic glycosyl transferases, promoting bacterial attachment to mammalian cells. In the presen...
متن کاملGlycosylation of the self-recognizing Escherichia coli Ag43 autotransporter protein.
Glycosylation is a common modulation of protein function in eukaryotes and is biologically important. However, in bacteria protein glycosylation is rare, and relatively few bacterial glycoproteins are known. In Escherichia coli only two glycoproteins have been described to date. Here we introduce a novel member to this exclusive group, namely, antigen 43 (Ag43), a self-recognizing autotransport...
متن کامل